
March 21, 2007 1

Super Scalar

Kalyan Basu

basu@cse.uta.edu

March 21, 2007 2

Super scalar Pipelines

• A pipeline that can complete more than 1
instruction per cycle is called a super scalar
pipeline.

• We know how to build pipelines with multiple
functional units.

• If we can issue more than 1 instruction into
the pipe at a time, then perhaps we can
complete more than 1 instruction per cycle.

• This implies that we need to fetch and
decode 2 or more instructions per cycle.

March 21, 2007 3

Multiple Issue Processors

Sperscalar ProcessorsSperscalar Processors

Variable number of instructions per clock cycle

Instruction Scheduling

StaticallyStatically: Compiler technique

Instruction execution in order of sequence

dynamicallydynamically: Tomasulo’s Algorithm

Instructions are out of order execution

VLIW : Very Long Instruction WordVLIW : Very Long Instruction Word

Fixed number of instructions formatted as a large

instruction or a fixed instruction packet with parallelism

among instructions [EPICEPIC: explicitly parallel Instruction

Computing]

Statically scheduled by the compiler

March 21, 2007 4

Multiple-Issue Processor Types

Common Issue Hazard Scheduling Distinguishing Examples

name structure detection characteristics

Super scalar dynamic HW static in-order execution SUN

UltraSPARC

(static)

Super scalar dynamic HW dynamic some out of order IBM Power 2

(dynamic)

Super scalar dynamic HW dynamic in-order execution Pentium III/4, Alpha

(speculative) with speculation with speculation HP PA8500, IBM RS64III

VLIW/LIW static SW static no hazards between Trimedia,i860

issue packets

EPIC mostly mostly mostly explicit dependency Itanium

static SW static marked by compiler

March 21, 2007 5

Super scalar

0-8 instruction per cycle

Static scheduling

all pipe line hazards are checked

instructions in order

Pipeline control logic will check hazards between the

instructions in execution phase and the new instruction

sequences. In case of hazard, only those instructions

preceding that one in the instruction sequence will be

issued.

All instructions are checked at the same time by Issue HW

Issue HW
Pipeline

Instruction

Memory

Issue Packet

Complexity of HW

This stage is pipelined

in all dynamic super

scalar system

March 21, 2007 6

Hardware based Speculation

Instruction Level Parallelism challenge: Control dependencies (?)Control dependencies (?)

Branch Prediction predict branches accurately

Multiple branches in one cycle require management of

control dependencies

SpeculationSpeculation predicts the outcome of branch instruction and execute

the instruction based on this speculation

Operation Dynamic Scheduling Speculation

Fetch Done Done

Issue Done Done

Execute not Done Done

March 21, 2007 7

HW Speculation

Three functions

1. Dynamic branch prediction to choose which instruction to

execute

2. Speculation to allow continuation of execution before the continuation of execution before the

control dependencies are resolvedcontrol dependencies are resolved with capability to undo undo

effects of incorrectly speculatedeffects of incorrectly speculated the sequence.

3. Dynamic scheduling to deal with the scheduling of different

combination of basic blocks.

Used: Power PC 603/604/G3/G4, Intel Pentium II/III/4, Alpha

21264, AMD K5/K6/Athlon, MIPS R11000/R1 12000

March 21, 2007 8

HW Speculation Implementation

Tomasul’s Algorithm

Results Instructions

Write CDBWrite CDB

Completed ResultCompleted Result

Results Instructions
Completed

Result
Instruction

CommitWhen instruction is no

longer speculative

Modification

Write CDBWrite CDB

March 21, 2007 9

ROB

Reorder Buffer : ROBReorder Buffer : ROB

It holds the result till Instruction Commits

Instruction-i completes Instruction-i commits

ROB Holds the result. Supplies the ROB Holds the result. Supplies the

operands to other instructions operands to other instructions

during this timeduring this time

Type Destination Value Ready

1.Branch with no

destination result

2.Store with memory

address

3.Register(ALU or

Load) with Registers

Register numbers for

ALU and Load and

Memory address for

store where the

instruction results to

be stored.

Holds the value of the

instruction results until

the instruction

commits.

Instruction has

completed its

results and ready

for commit.

March 21, 2007 10

4 Steps

Issue
Get instruction from Instruction Queue. Get a free

reservation station and a free ROB buffer. Send the

operand to reservation station, if they are available

in registers or the ROB. Update the control status of

reservation station and ROB buffers as busy. The

number of ROB allocated for the results is given to

Reservation Station to send the results when it is

placed in CDB. If either reservation stations are full

or ROB buffers are full, the instruction is stalled.

March 21, 2007 11

4 Steps

Execute
If the operands are not available, monitor CDB to

get the operands of the instruction. When both

operands are available at the reservation station,

execute the instruction. ALU operation may need

multiple clock cycle. Load will require two cycle.

Store will only compute the effective address and will

require one cycle.

March 21, 2007 12

4 Steps

Write Result
When result is available, write on CDB. From CDB

to any reservation stations waiting for the result and

also on ROB using the Tag available at reservation

station. Free the reservation station. If the value of

the store instruction available, it is written on the

value field of ROB. If the value of the store

instruction is not available, CDB is monitored to get

the value when it is ready and then written on ROB.

March 21, 2007 13

Commit Step

Commit
Three different sequences of actions

1. Normal Instruction: The instruction reaches head

of ROB, result is present in the buffer. At this stage,

commit updates the register with the results from buffer

and frees the buffer.

2. Store Instruction: Similar to Normal, only result

is updated in the Memory, in place of register.

3. Branch instruction with incorrect prediction:

The ROB is flashed. The execution is restarted at the

current successor of the branch.

March 21, 2007 14

Modified Tomasulo’s Algorithm

Instruction

FIFO

Registers

FP
Address

fn Unit

Memory fn unit Adder fn unit Multiplier fn unit

Reservation

Stations

Load

Buffers

Common Data Bus (CDB)

Operation Bus

Operand Bus

Address
Store Data

Reorder

Buffer

Store

Address

DataReg#

March 21, 2007 15

Example: Modified Tomasulo

Iteration1: L,D F0,0(R1) F0: array element

MUL,D F4,F0,F2 Add scalar in F2

S,D F4,0(R1) store result

DADDIUR1,R1,-#8 decrement pointer 8-bytes

BNE R1,R2,Loop branch R1!=R2 (R2 has the loop exit count)

Iteration2: L,D F0,0(R1)

MUL,D F4,F0,F2

S,D F4,0(R1)

DADDIUR1,R1,-#8

BNE R1,R2,Loop

Assume: L.D and MUL.D in the first iteration have committed, and all other instructions have

completed execution. The store would wait in the ROB for both effective address operand R1

and the value to be stored F4.

March 21, 2007 16

ROB Status

Entry Busy Instruction Status Destination Value

No

1 No L.D F0,0(R1) Commit F0 Men[0+Reg[R1]]

2 No MUL.D F4,F0,F2 Commit F4 #1.Reg[F2]

3 Yes S.D F4,0(R1) Write Result 0+Reg[R1] #2

4 Yes DADDIU R1,R1,-#8 Write Result R1 Reg[R1- 8]

5 Yes BNE R1,R2,Loop Write Result

6 Yes L.D F0,0(R1) Write Result F0 Men[#4]

7 Yes MUL.D F4,F0,F2 Write Result F4 #6.Reg[F2]

8 Yes S.D F4,0(R1) Write Result 0+ #4 #7

9 Yes DADDIU R1,R1,-#8 Write Result R1 #4 - 8

10 Yes BNE R1,R2,Loop Write Result

6

FP Register Status

Field F0 F1………. F4 F5 ……….

Reorder# 6 7

Busy Yes No Yes No

March 21, 2007 17

Design Consideration for

Speculation

Register Renaming versus ROBRegister Renaming versus ROB

Architecturally Visible Register SetArchitecturally Visible Register Set

Temporary Values in Tomasulo’s algorithm: RS, ROB

Register values reside on Architecturally visible registers, RS and ROB

Extended set of Physical Registers for Register Renaming.Extended set of Physical Registers for Register Renaming.

Renaming ProcessRenaming Process maps the physical registers to architecturally visible

registers.

The speculation recoveryspeculation recovery by explicit commit function to make a register

architectural register. Simplified Commit functionSimplified Commit function.

Reallocating RegistersReallocating Registers in renaming is complex process. In ROB,

reallocation of ROB and RS are automatic.

Renaming is simplified issue functionsimplified issue function, as only registers to be checked

for the operand. In ROB, Registers, RS and ROBs are checked for issue.

Real architectural registers are continuously changingcontinuously changing in Renaming

March 21, 2007 18

How much Speculation

Advantage of speculationAdvantage of speculation

Ability to uncover events that would otherwise stall the pipeline.

Multiple branches speculation simultaneously required for:

very high branch frequency

significant clustering of branches (DB management)

Long delays in functional unit.

Disadvantages of speculation:Disadvantages of speculation:

Processor may speculate a wrong costly exception function that will

waste the valuable resources.

To minimize those penalties, processor only speculates the simple

exception conditions like first order cache misses. The second level

cache misses are not speculated.

Exception handling complexities.

March 21, 2007 19

Hardware Speculation Model

1. Register Renaming: Infinite number of virtual registers avai1. Register Renaming: Infinite number of virtual registers available lable

to resolve all WAR and WAW Hazards. to resolve all WAR and WAW Hazards.

2. Branch Prediction is perfect2. Branch Prediction is perfect

3. Jump prediction perfect3. Jump prediction perfect

4. Memory address alias analysis: All memory address is known 4. Memory address alias analysis: All memory address is known

exactly and load can be moved before store provided that the exactly and load can be moved before store provided that the

addresses are not identicaladdresses are not identical

5. Perfect caches: All load and store instructions are cache hi5. Perfect caches: All load and store instructions are cache hit.t.

March 21, 2007 20

ILP in Perfect Processor

0

20

40

60

80

100

120

140

160

Spec Benchmark

gcc

espresso

li

fpppp

doduc

tomcatv

Instructions/cycle

March 21, 2007 21

Window Size

Dynamic scheduled processor to reach to an ideal ILP, need

to do the following:

1. Look arbitrarily far ahead to find a set of instructions

to issue, predicting all branches perfectly.

2. Rename all register uses to avoid WAR and WAW

3.Identify all data dependencies in amongst the

instructions and rename accordingly.

4.Identify all memory dependencies and remove them.

5. Provide sufficient functional unit to allow all ready

instructions to issue.

March 21, 2007 22

Window Size

WindowWindow: The set of instructions that are examined

simultaneously for issue is called Window

These actions will require large number of comparisons.

Assume n instructions are issued in a Window.

The total number of comparison needed

2{(n2{(n--1) + (n1) + (n--2) + 2) + ………………..+1} = 2...+1} = 2.nnCC22 = n= n
22 ––nn

Let n=50 Comparison = 2450

n= 2000 Comparison = 4.106

March 21, 2007 23

Window Size

Number of comparison required per clock cycle Number of comparison required per clock cycle

= maximum completion rate X Window Size X number of = maximum completion rate X Window Size X number of

operands per instruction.operands per instruction.

Currently window size is limited to 32Currently window size is limited to 32-- 120120

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7

Li

tomcatv

gcc

Instruction issued

per cycle

Window size

Infinite 2K 512 128 32 8 4

March 21, 2007 24

Static Super scalar in MIPS Processor

Assume

1. Two instructions per clock cycle

2. One Integer and one floating point instructions

3. Floating point Integer instructions have separate register files and functional units

4. Floating point instructions is only ADD that takes 3 cycles.

5. Issue restriction in case Integer instruction use FP registers in Load, Store or Move

operation

Completed before

previous

FP Instruction

Exception handling logic

Instruction type Pipeline stages

Integer IF ID EX MM WB

Floating Point IF ID EX EX EX MM WB

Integer IF ID EX MM WB

Floating Point IF ID EX EX EX MM WB

Integer IF ID EX MM WB

Floating point IF ID EX EX EX MM WB

March 21, 2007 25

Example

Loop: L,D F0,0(R1) F0: array element

ADD,D F4,F0,F2 Add scalar in F2

S,D F4,0(R1) store result

DADDIUR1,R1,-#8 decrement pointer 8-bytes

BNE R1,R2,Loop branch R1!=R2

Both FP and Integer operation in one cycle, Single Branch Instruction per cycle

Assume MIPS pipeline extended with Tomasulo’s algorithm

One Integer ALU for ALU operation and effective address calculation

Separate pipeline units for Integer and FP operations

Separate HW to evaluate branch condition, Two separate CDBsTwo separate CDBs

Dynamic branch prediction HW, No delayed branches, Branch prediction perfect

Cycles used for different functionsCycles used for different functions

Issue 1

write results 1

Integer ALU operation 1

FP ALU operation 3

March 21, 2007 26

UNWINDING OF Loop

Iteration1: L,D F0,0(R1) F0: array element

ADD,D F4,F0,F2 Add scalar in F2

S,D F4,0(R1) store result

DADDIUR1,R1,-#8 decrement pointer 8-bytes

BNE R1,R2,Loop branch R1!=R2 (R2 has the loop exit count)

Iteration2: L,D F0,0(R1)

ADD,D F4,F0,F2

S,D F4,0(R1)

DADDIUR1,R1,-#8

BNE R1,R2,Loop

Iteration3: L,D F0,0(R1)

ADD,D F4,F0,F2

S,D F4,0(R1)

DADDIUR1,R1,-#8

BNE R1,R2,Loop

March 21, 2007 27

Super scalar Pipelines

• Obviously, the two fetched instructions need to be independent
in every way (no structural or other pipeline hazards between
them).

• One of the best choices is to have one integer and one FP
instruction scheduled to be fetched and issued to the pipe at the
same time.

• Note that all hazard resolutions become more complicated in a
super- scalar pipeline.

 Instruction type Pipe stages

 Integer instruction IF ID EX MEM WB

 FP instruction IF ID EX MEM WB

 Integer instruction IF ID EX MEM WB

 FP instruction IF ID EX MEM WB

 Integer instruction IF ID EX MEM WB

 FP instruction IF ID EX MEM WB

 Integer instruction IF ID EX MEM WB

 FP instruction IF ID EX MEM WB

March 21, 2007 28

Time cycles

Iteration Instruction Issue at Executes Memory Write Comments

No at access at CDB

11:L,D F0,0(R1) 1 2 3 4 First Issue

ADD,DF4,F0,F2 1 5 8 Wait for L,D

S,D F4,0(R1) 2 3 9 Wait for ADD,D

DADDIUR1,R1,-#8 2 4 5 Wait for Integer ALU

BNE R1,R2,Loop 3 6 Wait for DADDIU

22:L,D F0,0(R1) 4 7 8 9 Wait for BNE complete

ADD,DF4,F0,F2 4 10 13 Wait for L,D

S,D F4,0(R1) 5 8 14 Wait for ADD,D

DADDIUR1,R1,-#8 5 9 10 Wait for Integer ALU

BNE R1,R2,Loop 6 11 Wait for DADDIU

33:L,D F0,0(R1) 7 12 13 14 Wait for BNE complete

ADD,DF4,F0,F2 7 15 18 Wait for L,D

S,D F4,0(R1) 8 13 19 Wait for ADD,D

DADDIUR1,R1,-#8 8 14 15 Wait for Integer ALU

BNE R1,R2,Loop 9 16 Wait for DADDIU

March 21, 2007 29

Resources Status

Clock Integer FP Data CDB

Cycle ALU ALU Cache

2 1/LD

3 1/SD 1/LD

4 1/DADDIU 1/LD

5 1/ADDD 1/DADDIU

6

7 2/LD

8 2/SD 2/LD 1/ADDD

9 2/DADDIU 1/SD 2/LD

10 2/ADDD 2/DADDIU

11

12 3/LD

13 3/SD 3/LD 2/ADDD

14 3/DADDIU 2/SD 3/LD

15 3/ADDD 3/DADDIU

16

17

18 3/ADDD

19 3/SD

March 21, 2007 30

Time cycles for separate Integer ALU

Iteration Instruction Issue at Executes Memory Write Comments

No at access at CDB

1:L,D F0,0(R1) 1 2 3 4 First Issue

ADD,DF4,F0,F2 1 5 8 Wait for L,D

S,D F4,0(R1) 2 3 9 Wait for ADD,D

DADDIUR1,R1,-#8 2 3 4 Integer ALU Free

BNE R1,R2,Loop 3 5 Wait for DADDIU

2:L,D F0,0(R1) 4 6 7 8 Wait for BNE complete

ADD,DF4,F0,F2 4 9 12 Wait for L,D

S,D F4,0(R1) 5 7 13 Wait for ADD,D

DADDIUR1,R1,-#8 5 6 7 Integer ALU Free

BNE R1,R2,Loop 6 8 Wait for DADDIU

3:L,D F0,0(R1) 7 9 10 11 Wait for BNE complete

ADD,DF4,F0,F2 7 12 15 Wait for L,D

S,D F4,0(R1) 8 10 16 Wait for ADD,D

DADDIUR1,R1,-#8 8 9 10 Integer ALU Free

BNE R1,R2,Loop 9 11 Wait for DADDIU

6

March 21, 2007 31

Resources Status with separate Integer ALU

Clock Integer Address FP Data CDB#1 CDB#2

Cycle ALU ALU ALU Cache

2 1/LD

3 1/DADDIU 1/SD 1/LD

4 1/LD 1/DADDIU

5 1/ADDD

6 2/DADDIU 2/LD

7 2/SD 2/LD 2/DADDIU

8 1/ADDD 2/LD

9 3/DADDIU 3/LD 2/ADDD 1/SD

10 3/SD 3/LD 3/DADDIU

11 3/LD

12 3/ADDD 2/ADDD

13 2/SD

14

15 3/ADDD

16 3/SD

March 21, 2007 32

Super scalar Pipelines

• 12 cycles per 5 iterations 2.4 cycles per iteration!

Integer instruction FP instruction Clock cycle

Loop: LD F0,0(R1) 1

LD F6,-8(R1) 2

LD F10,-16(R1) ADDD F4,F0,F2 3

LD F14,-24(R1) ADDD F8,F6,F2 4

LD F18,-32(R1) ADDD F12,F10,F2 5

SD 0(R1),F4 ADDD F16,F14,F2 6

SD -8(R1),F8 ADDD F20,F18,F2 7

SD -16(R1),F12 8

SUBI R1,R1,#40 9

SD 16 (R1), F16 10

BNEZ R1,LOOP 11

SD 8(R1),F20 12

The End of Pipelining!

March 21, 2007 33

Super scalar Pipelines

• Consider our previous loop example:

Loop: LD F0, 0(R1) ; F0=array element

ADD F4, F0, F2 ; add scalar in F2

SD 0(R1), F4 ; store result

SUBI R1, R1, #8 ; decrement pointer

; 8 bytes (per DW)

BNEZ R1, Loop ; branch R1 != zero

• We were able to unroll this loop 4 times and schedule the
instructions so that each loop iteration could complete every 3.5
clock cycles.

• Can we do better with super scaling?

– Need to unroll 5 times

– Pair integer and FP operations

