
March 21, 2007 1

Super Scalar 

Kalyan Basu

basu@cse.uta.edu



March 21, 2007 2

Super scalar Pipelines

• A pipeline that can complete more than 1
instruction per cycle is called a super scalar 
pipeline.

• We know how to build pipelines with multiple 
functional units.

• If we can issue more than 1 instruction into 
the pipe at a time, then perhaps we can 
complete more than 1 instruction per cycle.

• This implies that we need to fetch and 
decode 2 or more instructions per cycle.
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Multiple Issue Processors

Sperscalar ProcessorsSperscalar Processors

Variable number of instructions per clock cycle

Instruction Scheduling

StaticallyStatically: Compiler technique

Instruction execution in order of sequence

dynamicallydynamically: Tomasulo’s Algorithm

Instructions are out of order execution

VLIW : Very Long Instruction WordVLIW : Very Long Instruction Word

Fixed number of instructions formatted as a large 

instruction or a fixed instruction packet with parallelism 

among instructions [EPICEPIC: explicitly parallel Instruction 

Computing]

Statically scheduled by the compiler
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Multiple-Issue Processor Types

Common Issue Hazard Scheduling Distinguishing Examples

name structure detection characteristics

Super scalar dynamic HW static in-order execution          SUN 

UltraSPARC

(static)

Super scalar dynamic HW dynamic some out of order           IBM Power 2

(dynamic)

Super scalar dynamic HW dynamic in-order execution          Pentium III/4, Alpha

(speculative) with speculation        with speculation      HP PA8500, IBM RS64III

VLIW/LIW static SW static no hazards between          Trimedia,i860

issue packets

EPIC mostly mostly mostly explicit dependency          Itanium

static SW static marked by compiler
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Super scalar

0-8 instruction per cycle

Static scheduling

all pipe line hazards are checked

instructions in order

Pipeline control logic will check hazards between the 

instructions in execution phase and the new instruction 

sequences. In case of hazard, only those instructions 

preceding that one in the instruction sequence will be 

issued.

All instructions are checked at the same time by Issue HW

Issue HW
Pipeline

Instruction 

Memory

Issue Packet

Complexity of HW

This stage is pipelined 

in all dynamic super 

scalar system
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Hardware based Speculation

Instruction Level Parallelism challenge: Control dependencies (?)Control dependencies (?)

Branch Prediction predict branches accurately

Multiple branches in one cycle require management of 

control dependencies

SpeculationSpeculation predicts the outcome of branch instruction and execute 

the instruction based on this speculation

Operation Dynamic Scheduling Speculation

Fetch Done Done

Issue Done Done

Execute not Done Done
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HW Speculation

Three functions

1. Dynamic branch prediction to choose which instruction to 

execute

2. Speculation to allow continuation of execution before the continuation of execution before the 

control dependencies are resolvedcontrol dependencies are resolved with capability to undo undo 

effects of incorrectly speculatedeffects of incorrectly speculated the sequence.

3. Dynamic scheduling to deal with the scheduling of different 

combination of basic blocks.

Used: Power PC 603/604/G3/G4, Intel Pentium II/III/4, Alpha 

21264, AMD K5/K6/Athlon, MIPS R11000/R1 12000 
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HW Speculation Implementation

Tomasul’s Algorithm

Results Instructions

Write CDBWrite CDB

Completed ResultCompleted Result

Results Instructions
Completed

Result
Instruction

CommitWhen instruction is no

longer speculative

Modification

Write CDBWrite CDB
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ROB

Reorder Buffer  : ROBReorder Buffer  : ROB

It holds the result till Instruction Commits

Instruction-i completes Instruction-i commits

ROB Holds the result. Supplies the ROB Holds the result. Supplies the 

operands to other instructions operands to other instructions 

during this timeduring this time

Type Destination Value Ready

1.Branch with no 

destination result

2.Store with memory 

address

3.Register(ALU or 

Load) with Registers

Register numbers for 

ALU and Load and 

Memory address for 

store where the 

instruction results to 

be stored.

Holds the value of the 

instruction results until 

the instruction

commits.

Instruction has

completed its 

results and ready

for commit.
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4 Steps

Issue
Get instruction from Instruction Queue. Get a free 

reservation station and a free ROB buffer. Send the 

operand to reservation station, if they are available 

in registers or the ROB. Update the control status of 

reservation station and ROB buffers as busy. The 

number of ROB allocated for the results is given to 

Reservation Station to send the results when it is 

placed in CDB. If either reservation stations are full 

or ROB buffers are full, the instruction is stalled.
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4 Steps

Execute
If the operands are not available, monitor CDB to 

get the operands of the instruction. When both 

operands are available at the reservation station, 

execute the instruction. ALU operation may need 

multiple clock cycle. Load will require two cycle. 

Store will only compute the effective address and will 

require one cycle.
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4 Steps

Write Result
When result is available, write on CDB. From CDB 

to any reservation stations waiting for the result and 

also on ROB using the Tag available at reservation 

station. Free the reservation station. If the value of 

the store instruction available, it is written on the 

value field of ROB. If the value of the store 

instruction is not available, CDB is monitored to get 

the value when it is ready and then written on ROB.
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Commit Step

Commit
Three different sequences of actions

1. Normal Instruction: The instruction reaches head 

of ROB, result is present in the buffer. At this stage, 

commit updates the register with the results from buffer 

and frees the buffer.

2. Store  Instruction:  Similar to Normal, only result 

is updated in the Memory, in place of register.

3. Branch instruction with incorrect prediction:  

The ROB is flashed. The execution is restarted at the 

current successor of the branch.
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Modified Tomasulo’s Algorithm 

Instruction

FIFO

Registers

FP
Address 

fn Unit

Memory fn unit Adder fn unit Multiplier fn unit

Reservation

Stations

Load

Buffers

Common Data Bus (CDB)

Operation Bus

Operand Bus

Address
Store Data

Reorder

Buffer

Store 

Address

DataReg#
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Example: Modified Tomasulo

Iteration1: L,D F0,0(R1) F0: array element

MUL,D F4,F0,F2 Add scalar in F2

S,D F4,0(R1) store result

DADDIUR1,R1,-#8 decrement pointer 8-bytes

BNE R1,R2,Loop branch R1!=R2 (R2 has the loop exit count)

Iteration2: L,D F0,0(R1)

MUL,D F4,F0,F2

S,D F4,0(R1)

DADDIUR1,R1,-#8

BNE R1,R2,Loop

Assume: L.D and MUL.D in the first iteration have committed, and all other instructions have 

completed execution. The store would wait in the ROB for both effective address operand R1 

and the value to be stored F4.
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ROB Status

Entry Busy Instruction              Status Destination Value

No

1 No L.D F0,0(R1) Commit F0 Men[0+Reg[R1]]

2 No MUL.D F4,F0,F2 Commit F4 #1.Reg[F2]

3 Yes S.D F4,0(R1) Write Result    0+Reg[R1]       #2

4 Yes DADDIU R1,R1,-#8 Write Result   R1 Reg[R1- 8]

5 Yes BNE R1,R2,Loop Write Result

6 Yes L.D F0,0(R1) Write Result     F0 Men[#4]

7 Yes MUL.D F4,F0,F2 Write Result     F4                  #6.Reg[F2]

8 Yes S.D F4,0(R1) Write Result    0+ #4              #7

9 Yes DADDIU R1,R1,-#8 Write Result   R1                  #4 - 8

10 Yes BNE R1,R2,Loop Write Result 

6

FP Register Status

Field F0  F1………. F4   F5 ……….

Reorder# 6 7

Busy Yes No Yes  No
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Design Consideration for 

Speculation

Register Renaming versus ROBRegister Renaming versus ROB

Architecturally Visible Register SetArchitecturally Visible Register Set

Temporary Values in Tomasulo’s algorithm: RS, ROB

Register values reside on Architecturally visible registers, RS and ROB

Extended set of Physical Registers for Register Renaming.Extended set of Physical Registers for Register Renaming.

Renaming ProcessRenaming Process maps the physical registers to architecturally visible 

registers. 

The speculation recoveryspeculation recovery by explicit commit function to make a register 

architectural register. Simplified Commit functionSimplified Commit function.

Reallocating RegistersReallocating Registers in renaming is complex process. In ROB, 

reallocation of ROB and RS are automatic.

Renaming is simplified issue functionsimplified issue function, as only registers to be checked 

for the operand. In ROB, Registers, RS and ROBs are checked for issue.

Real architectural registers are continuously changingcontinuously changing in Renaming



March 21, 2007 18

How much Speculation

Advantage of speculationAdvantage of speculation

Ability to uncover events that would otherwise stall the pipeline.

Multiple branches speculation simultaneously required for:

very high branch frequency

significant clustering of branches (DB management)

Long delays in functional unit.

Disadvantages of speculation:Disadvantages of speculation:

Processor may speculate a wrong costly exception function that will 

waste the valuable resources.

To minimize those penalties, processor only speculates the simple 

exception conditions like first order cache misses.  The second level 

cache misses are not speculated. 

Exception handling complexities.
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Hardware Speculation Model

1.  Register Renaming: Infinite number of virtual registers avai1.  Register Renaming: Infinite number of virtual registers available lable 

to resolve all WAR and WAW Hazards. to resolve all WAR and WAW Hazards. 

2. Branch Prediction is perfect2. Branch Prediction is perfect

3. Jump prediction perfect3. Jump prediction perfect

4. Memory address alias analysis: All memory address is known 4. Memory address alias analysis: All memory address is known 

exactly and load can be moved before store provided that the exactly and load can be moved before store provided that the 

addresses are not identicaladdresses are not identical

5. Perfect caches: All load and store instructions  are cache hi5. Perfect caches: All load and store instructions  are cache hit.t.
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ILP in Perfect Processor
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Window Size

Dynamic scheduled processor to reach to an ideal ILP, need 

to do the following:

1. Look arbitrarily far ahead to find a set of instructions 

to issue, predicting all branches perfectly.

2. Rename all register uses to avoid WAR and WAW

3.Identify all data dependencies in amongst the 

instructions and rename accordingly.

4.Identify all memory dependencies and remove them.

5. Provide sufficient functional unit to allow all ready 

instructions to issue.
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Window Size

WindowWindow: The set of instructions that are examined 

simultaneously for issue is called Window

These actions will require large number of comparisons.

Assume n instructions are issued in a Window.

The total number of comparison needed

2{(n2{(n--1) + (n1) + (n--2) + 2) + ………………..+1} = 2...+1} = 2.nnCC22 = n= n
22 ––nn

Let n=50             Comparison = 2450

n= 2000        Comparison = 4.106
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Window Size

Number of comparison required per clock cycle Number of comparison required per clock cycle 

= maximum completion rate X Window Size X number of = maximum completion rate X Window Size X number of 

operands per instruction.operands per instruction.

Currently window size is limited to 32Currently window size is limited to 32-- 120120
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Window size

Infinite 2K 512 128 32 8 4
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Static Super scalar in MIPS Processor

Assume

1. Two instructions per clock cycle

2. One Integer and one floating point instructions

3. Floating point Integer instructions have separate register files and functional units

4. Floating point instructions is only ADD that takes 3 cycles.

5. Issue restriction in case Integer instruction use FP registers in Load, Store or Move 

operation

Completed before 

previous 

FP Instruction

Exception handling logic

Instruction type Pipeline stages

Integer IF   ID   EX   MM   WB  

Floating Point IF   ID   EX   EX     EX    MM   WB

Integer IF   ID    EX     MM   WB

Floating Point IF   ID    EX     EX     EX    MM   WB

Integer IF    ID      EX     MM   WB

Floating point IF    ID      EX     EX     EX    MM   WB   
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Example

Loop: L,D F0,0(R1) F0: array element

ADD,D F4,F0,F2 Add scalar in F2

S,D F4,0(R1) store result

DADDIUR1,R1,-#8 decrement pointer 8-bytes

BNE R1,R2,Loop branch R1!=R2

Both FP and Integer operation in one cycle, Single Branch Instruction per cycle

Assume MIPS pipeline extended with Tomasulo’s algorithm

One Integer ALU for ALU operation and effective address calculation

Separate pipeline units for Integer and FP operations

Separate HW to evaluate branch condition, Two separate CDBsTwo separate CDBs

Dynamic branch prediction HW, No delayed branches, Branch prediction perfect

Cycles used for different functionsCycles used for different functions

Issue 1

write results 1

Integer ALU operation 1

FP ALU operation 3
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UNWINDING OF Loop

Iteration1: L,D F0,0(R1) F0: array element

ADD,D F4,F0,F2 Add scalar in F2

S,D F4,0(R1) store result

DADDIUR1,R1,-#8 decrement pointer 8-bytes

BNE R1,R2,Loop branch R1!=R2 (R2 has the loop exit count)

Iteration2: L,D F0,0(R1)

ADD,D F4,F0,F2

S,D F4,0(R1)

DADDIUR1,R1,-#8

BNE R1,R2,Loop

Iteration3: L,D F0,0(R1)

ADD,D F4,F0,F2

S,D F4,0(R1)

DADDIUR1,R1,-#8

BNE R1,R2,Loop
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Super scalar Pipelines

• Obviously, the two fetched instructions need to be independent
in every way (no structural or other pipeline hazards between 
them).

• One of the best choices is to have one integer and one FP 
instruction scheduled to be fetched and issued to the pipe at the 
same time.

• Note that all hazard resolutions become more complicated in a 
super- scalar pipeline. 

 Instruction type   Pipe stages

 Integer instruction IF ID EX MEM WB

 FP instruction IF ID EX MEM WB

 Integer instruction IF ID EX MEM WB

 FP instruction IF ID EX MEM WB

 Integer instruction IF ID EX MEM WB

 FP instruction IF ID EX MEM WB

 Integer instruction IF ID EX MEM WB

 FP instruction IF ID EX MEM WB



March 21, 2007 28

Time cycles

Iteration Instruction        Issue at    Executes   Memory   Write Comments

No at        access at    CDB

11:L,D F0,0(R1) 1 2 3 4 First Issue

ADD,DF4,F0,F2 1 5 8 Wait for L,D

S,D F4,0(R1) 2 3 9 Wait for ADD,D

DADDIUR1,R1,-#8 2 4 5 Wait for Integer ALU

BNE R1,R2,Loop 3 6 Wait for DADDIU

22:L,D F0,0(R1) 4 7 8 9 Wait for BNE complete

ADD,DF4,F0,F2 4 10 13 Wait for L,D

S,D F4,0(R1) 5 8 14 Wait for ADD,D

DADDIUR1,R1,-#8 5 9 10 Wait for Integer ALU

BNE R1,R2,Loop 6 11 Wait for DADDIU

33:L,D F0,0(R1) 7 12 13 14 Wait for BNE complete

ADD,DF4,F0,F2 7 15 18 Wait for L,D

S,D F4,0(R1) 8 13 19 Wait for ADD,D

DADDIUR1,R1,-#8 8 14 15 Wait for Integer ALU

BNE R1,R2,Loop 9 16 Wait for DADDIU
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Resources Status

Clock Integer FP Data CDB

Cycle ALU ALU Cache

2 1/LD

3 1/SD 1/LD

4 1/DADDIU 1/LD

5 1/ADDD 1/DADDIU

6

7 2/LD

8 2/SD 2/LD 1/ADDD

9 2/DADDIU 1/SD 2/LD

10 2/ADDD 2/DADDIU

11

12 3/LD

13 3/SD 3/LD 2/ADDD

14 3/DADDIU 2/SD 3/LD

15 3/ADDD 3/DADDIU

16

17

18 3/ADDD

19 3/SD
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Time cycles for separate Integer ALU

Iteration Instruction        Issue at    Executes   Memory   Write Comments

No at        access at    CDB

1:L,D F0,0(R1) 1 2 3 4 First Issue

ADD,DF4,F0,F2 1 5 8 Wait for L,D

S,D F4,0(R1) 2 3 9 Wait for ADD,D

DADDIUR1,R1,-#8 2 3 4 Integer ALU Free

BNE R1,R2,Loop 3 5 Wait for DADDIU

2:L,D F0,0(R1) 4 6 7 8 Wait for BNE complete

ADD,DF4,F0,F2 4 9 12 Wait for L,D

S,D F4,0(R1) 5 7 13 Wait for ADD,D

DADDIUR1,R1,-#8 5 6 7 Integer ALU Free

BNE R1,R2,Loop 6 8 Wait for DADDIU

3:L,D F0,0(R1) 7 9 10 11 Wait for BNE complete

ADD,DF4,F0,F2 7 12 15 Wait for L,D

S,D F4,0(R1) 8 10 16 Wait for ADD,D

DADDIUR1,R1,-#8 8 9 10 Integer ALU Free

BNE R1,R2,Loop 9 11 Wait for DADDIU

6
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Resources Status with separate Integer ALU

Clock Integer Address FP Data CDB#1 CDB#2

Cycle ALU ALU ALU Cache

2 1/LD

3 1/DADDIU 1/SD 1/LD

4 1/LD 1/DADDIU

5 1/ADDD

6 2/DADDIU 2/LD

7 2/SD 2/LD 2/DADDIU

8 1/ADDD 2/LD

9 3/DADDIU 3/LD 2/ADDD 1/SD

10 3/SD 3/LD 3/DADDIU

11 3/LD

12 3/ADDD 2/ADDD

13 2/SD

14

15 3/ADDD

16 3/SD



March 21, 2007 32

Super scalar Pipelines

• 12 cycles per 5 iterations  2.4 cycles per iteration!

Integer instruction FP instruction Clock cycle

Loop: LD        F0,0(R1) 1

LD        F6,-8(R1) 2

LD        F10,-16(R1) ADDD F4,F0,F2 3

LD        F14,-24(R1) ADDD F8,F6,F2 4

LD        F18,-32(R1) ADDD F12,F10,F2 5

SD       0(R1),F4 ADDD F16,F14,F2 6

SD       -8(R1),F8 ADDD F20,F18,F2 7

SD       -16(R1),F12 8

SUBI    R1,R1,#40 9

SD       16 (R1), F16 10

BNEZ   R1,LOOP 11

SD        8(R1),F20 12

The End of Pipelining!
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Super scalar Pipelines

• Consider our previous loop example:

Loop: LD F0, 0(R1) ; F0=array element

ADD F4, F0, F2 ; add scalar in F2

SD 0(R1), F4 ; store result

SUBI R1, R1, #8 ; decrement pointer

; 8 bytes (per DW)

BNEZ R1, Loop ; branch R1 != zero 

• We were able to unroll this loop 4 times and schedule the 
instructions so that each loop iteration could complete every 3.5 
clock cycles. 

• Can we do better with super scaling?

– Need to unroll 5 times

– Pair integer and FP operations


